

1

What will be in this presentation?

- The origins of bar modeling
- An overview of the bar modelling process
- Top tips for teachers in how and when to use bar models
- Resources to support teachers.

Bar Modelling

The theory underpinning bar model is known as:

Concrete, Pictorial or Visual, Abstract (CPA or CVA)

Mean Programme for International Student Assessment (PISA) score of students in Singapore from 2009 to 2018, by subject

5

A system of learning that uses physical and visual aids to build a

Concrete - Visual Abstract (CVA) approach

 child's understanding of abstract topics.

It provides teachers with opportunities to:

- model mathematical thinking using manipulatives

Visual

Abstract
build a child's overall sense of number which allows for transfer across a range of mathematical skills

7

Concrete-Visual-Abstract sequence

All students, regardless of ability, benefit from the use of practical resources in ensuring understanding goes beyond the learning of a procedure.

Concrete representation
Use square counters to represent 3×5, showing rows and columns.

Visual representation
Draw 3×5 using grid paper or using a bar model

Abstract representation

Represent the problem in words and symbols

There were five children at a party. They each ate three cupcakes. How many cupcakes did they eat altogether?

Represent the problem using numbers and symbols
$3 \times 5=15$

Concrete-Visual-Abstract sequence

If Joe has 24 stickers and Sally has three times as many stickers as Joe, how many stickers do they have altogether?

Use MAB blocks to model and demonstrate that there are three groups with 24 in each group

Then use a bar model to represent the three groups with 24 in each group

Joe
Sally

9

Concrete-Visual-Abstract sequence

- These three phases are designed to overlap.
- It's not an entirely linear process where students work only with concrete materials, then move to visual representations, and finally use only abstract methods and symbols.
- Students need to make connections between the abstract and the concrete or
 representational, otherwise the symbols remain abstract.

Bar Modelling

is a drawing used as part of the Concrete, Visual Abstract approach to teaching.

Bar models are a visual representation of a problem where bars are used to represent the known and unknown quantities.

Bar Modelling

- Bar models will not 'do' the maths, they allow students to understand what maths needs to be done.

Bar modelling

Bar modelling does not require students to have any resources except for pencil and paper.

For example, bar models can be used in the classroom and in tests when other resources are not allowed.

Bar modelling

Is a form of mathematical drawing using rectangles.

These rectangles are a representation not a precise drawing.

3 Units $\rightarrow 90$
1

Bar models are also known as tape diagrams (in Japan) and strip diagrams (in the US).

Stage 1B

Model how addition and subtraction are inverse operations using concrete materials, drawings and diagram.

Example(s):

40			
27	13		$40=27+13$
:---			
$40-27=13$			
$40-13=27$			

Image long description: A bar model is made up of three rectangles, representing the part-part-whole relationship between 27,13 and 40 . One on top is labelled 40 , and two rectangles below are labelled 27 and 13 , and are collectively the same length as the first rectangle. The equations ' $40=27+13$ ', $40-27=13$ ' and ' $40-13=27$ ' are to the right.

Example(s):

If $64-17=47$, what is $64-47$?

Stage 2A examples

64	
47	17
$64-17=47$	
$64-47=17$	

Image long description: A bar model is made up of three rectangles, representing the part-part-whole relationship between 47,17 and 64 . One on top is labelled 64 , and two rectangles below are labelled 47 and 17 , and are collectively the same length as the first rectangle. The equations ' $64-17=47$ ' and ' $64-47=17$ are to the right.

17

In Stage 2, fractions are represented by partitioning lengths. This enables students to measure with partitioned unit fractions. Mapping these lengths to number lines and then aligning the zero point on number lines provides a basis for comparison of fractions as abstract numbers.

Figure 4: Comparing one-third to one half

Example(s):

Compare unit fractions using aligned diagrams and number lines to determine which is larger $\frac{1}{3}$ or $\frac{3}{8}$?

Image long description: The first fraction strip is split into eighths shaded up to 3 eighths overlaid on a number line with eighths marked. The second fraction strip is split into thirds shaded up to one third overlaid on a number line marked with thirds. The 2 fraction strips show that 3 eighths is larger than one third.

Stage 2A Partitioned fractions teaching advice

Stage 2B Partitioned fractions example

Example(s):
A recipe requires 3 cups of flour for 10 people. How many cups of flour are required for 40 people?

3 cups		? cups
10 people	40 people	

Image long description: A rectangle divided into quarters with the first quarter stating 3 cups for 10 people, with an unknown number of cups for 40 people at the end of the rectangle.

Example(s):

Image long description: A fraction strip divided into fifths overlaid on a number line from 0 to 1 split into fifths, each section of the fraction strip is labelled as 6 , with 2 fifths shaded, and the number 30 overhanging the length of the number line.

Stage 3A Multiplicative relations example

Bar
Modelling

Types of problems

Students need a toolbox of strategies to solve problems

Types of Bar Modelling

Part/Whole

$\boldsymbol{?}$	
17	83

Bar model representing the addition equation $17+83=$

160	
$?$	40

Bar model representing the subtraction equation $160-40=$

36			
$?$	$?$	$?$	$?$

Bar model representing the division equation $36 \div 4=$ or the multiplication equation $4 \times ?=36$

Comparison

Jo has 11 cakes and Sam has 7 cakes. What is the difference? Or how many altogether?

Sandy has 12 football cards and Umar has 3. How many more does Sandy have than Umar?

Types of Bar Modelling

Missing number problems

$?$	
7	9

Bar model to represent the problem $7=$? -9
Money problems

$\$ 3$		
$55 c$	$60 c$	$?$

A boy has $\$ 3$. He buys some lollies for 55c and some chips for 60c. How much change does he get?

Fraction problems

Time problems

From 7:35 to 8:55 = ? minutes		
$?$	10 min	$?$

A film starts at 7:35 pm and ends at 8: 55 pm . There is an ice-cream break of 10 minutes, halfway through. How long is the movie?

25

Example 1

My family travelled to Byron Bay for holiday. We drove 476km before lunch and 285km after lunch. How far did we travel altogether?

$?$	
476	

Part/whole or missing number problem

Example 2

My family travelled to Byron Bay for holiday. We drove 759km altogether. If we drove 476 before lunch, how far did we travel after lunch?

759		
476	$?$	

Example 3

My family and some friends travelled in two cars on holiday. We drove 595 km in one day and they travelled 679 km in one day? How much further did they travel than us?

Example 4

Josie had 25 cupcakes and she needed to share them between five friends How many cupcakes did each friend receive?

Example 5

Five children each had six toy cars. How many cars did they have altogether?

Example 6

Jane had 24 apples and Sam had 12 apples, what fraction of the apples are green?

Jane

Sam

Example 7 - two step problem

I spent \$1000 altogether, buying a Nintendo game boy and some games. I spent $3 / 4$ of my money on the Nintendo. How much did I spend on games? How much money did I spend on the Nintendo?

Example 8 - two step problem

I saved \$750. I spent \$575 on a Nintendo Game Boy and \$125.50 buying some games for it. How much change did I receive?

$\$ 750$		
$\$ 575$	$\$ 125.50$	$?$

Money problem

Example 9 - two step problem

There were 6000 people at the one-day cricket test match seated in 5 sections. 2235 were seated in Section A, 1062 in Section B, 823 in Section C and 227 in section D. How many people were seated in Section E?

Example 10 - two step problem

Farmer Joe had 75 sheep on his farm. Farmer Sarah had twice as many sheep as farmer Joe. How many sheep did farmer Sarah
have? How many sheep did they have altogether?

Farmer

Joe

75

Farmer
Sarah

Comparison problem

35

37

Australian Curriculum Victorian Curriculum NSW Syllabus About Ochre
θ

To access our new Years 3-6 novel studies guides go to this link.

Adaptable resources created for teachers, by teachers

Thousands of curriculum-aligned and evidence-based resources for everyday use, completely free
Register to create an account, or login to access our resources.

ais

Ochre Education

Year 1

12. Whole-part bar models

Australian Curriculum Year 1 Maths > Part-whole addition and subtraction > 12. Whole-part bar models
I can use the discrete part-whole bar model to solve word problems that involve addition or subtraction within 10
Presentation

41

${ }^{\text {re }}$ (Solve) ${ }^{\text {il }}$

TEACHING RESOURCES

PROFESSIONAL LEARNING
OUR WORK
SIGN UP

Teaching resources

reSolve teaching resources are sequences linked to the Australian curriculum content descriptors and proficiency strands of fluency, understanding, problem solving and reasoning. Sequences vary in length from a single lesson to long term investigations.
Each teaching resource is carefully designed to develop progressive understanding through tasks that encourage a spirit of inquiry.
Each resource download comes packaged with all the materials needed to deliver the sequence, including an overview, lesson plans, slideshows, student worksheets, spreadsheets etc.

Use the search bar below to filter resources by strand and year, or to search for keywords, topics, or curriculum descriptors.

43

Resources

Bar Model Method: In Problem Solving
Students use the bar model method flexibly to solve multistep word problems involving four operations with whole numbers and fractions.

ACMNA123; ACMNA126; ACMNA127; ACMNA154; ACMNA155
Y6

Lesson 1: Addition of Whole Numbers

Students are introduced to the bar model method with the part-whole bar model through this lesson. Students learn how to construct the part-whole bar model and how it can help to represent addition contexts through worked examples with simple numbers and tasks with larger numbers. Three types of addition contexts are used: (1) one set of items made up of 2 parts; (2) the whole being formed from two distinct sets of items; and (3) another set of items "adding on" or "joining" to form a new whole.

Lesson 2: Subtraction of Whole Numbers

In this lesson, part-whole bar models are used to represent subtraction problems involving whole numbers. Students study various different subtraction situations (e.g. 'take away', compare) through five examples. Students then practise with further problems to consolidate this learning

Lesson 3: Multiplication \& Division

Students learn how the bar model can help represent multiplication and division contexts by studying examples and practising with further tasks. The tasks encountered involve equal groups multiplication and partition and quotition variations of division problems. The examples use very simple numbers. Consolidation tasks have larger numbers and contain more mathematical information to sort through.

5 topics, Lesson 4:Addition of Fractions

In this lesson, students learn how to use bar model as a tool to represent a variety of worded addition problem involving fractions, by studying worked examples and practising with further tasks. They encounter situations where the bars that make up a bar model may simultaneously represent an absolute number (e.g. \$50) and a fraction of a specified quantity (quarter of a cost).

Lesson 5: Subtraction of Fractions d decima ra.
, solve all the worked examples. Bridging material is supplied so that students

45

Online bar models

https://toytheater.com/number-line-bars/

Bar model essentials

- Start in Year 1 with simple part-part-whole model and comparison models.
- Teach explicitly in Stage 1B and Stage 2 so that bar models become part of a students' 'toolbox' of problem-solving strategies.
- Encourage Stage 3 students to use when solving multi-step problems.
- Do not let students become fixated on the accuracy of their bar models
- Be aware that confident Stage 3 students may not want to use bar models, as they are able to use abstract symbols.

47

