Reasoning: "The glue that holds everything together"

Andrea de Carvalho

Sydney Catholic Schools University of New South Wales

IER/ UNSW Maths Conference: Bringing Maths to Life

November 23, 2023

Working Mathematically process: Reasoning

★ Understand reasoning as a process

★ Teach reasoning effectively

★ Assess reasoning consistently

Rationale

The **Rationale** draws on research regarding the positive impact of mathematics education when students enjoy learning Mathematics:

When students enjoy learning Mathematics, they develop a positive self-concept and become self-motivated learners through active participation in appropriately challenging tasks. This can enhance their resilience in solving mathematical problems relevant to further education and their everyday lives.

Aim

"The aim of Mathematics K–10 is to enable students to become confident users of mathematics, learning and applying the language of mathematics to **communicate efficiently and effectively**.

They develop an increasingly sophisticated **understanding** of mathematical concepts and a **fluency** with mathematical processes that helps them to interpret and **solve problems**.

Students make connections within mathematics and connect mathematical concepts with the world around them. They learn to understand and appreciate how *mathematics is a relevant part of their lives*."

Mathematics 3–6

Working mathematically through communicating reasoning, understanding and fluency, and problem solving

Scan NSW Curriculum document: *Reasoning in Mathematics K–6*

https://tinyurl.com/NSWreasoning

★ How is 'reasoning' different to 'explaining'?

★ What types of reasoning does the syllabus require students to learn?

"Reasoning is the glue that holds everything together,

the lodestar that guides learning" (Kilpatrick et al., 2001, p.129).

Reasoning: Match Masters!

https://tinyurl.com/reasonmatch

PROBLEM 9

e.g. Stage 2A Representing Number Compare and describe the relative size of numbers by positioning numbers on a number line (<u>Reasons about quantity</u>)

PROBLEM 2

e.g. Stage 3B Multiplicative Relations Determine a rule describing the relationship between the bottom number and the top number in a table (<u>Algebraic</u> <u>reasoning</u>)

PROBLEM 6

e.g. Stage 3A 2D Spatial Structure Recognise that triangles and quadrilaterals can be classified in more than one way (<u>Reasons about spatial relations</u>)

PROBLEM 5

e.g. Stage 2B Multiplicative Relations Complete number sentences involving multiplication & division by calculating

PROBLEM 7

e.g. Stage 2B 3D Multiplicative Relations Use the associative property within multiplication to regroup the factors (Reasons about spatial structure)

PROBLEM 1

e.g. Stage 2A Multiplicative Relations Create and continue a variety of number patterns that increase or decrease by a constant amount (<u>Reasons about patterns</u>)

PROBLEM 4

e.g. Stage 2A Data

Represent the same dataset using more than one type of display and compare the displays (<u>Statistical reasoning</u>)

PROBLEM 3

e.g. Stage 3A 3D Spatial Structure Visualise and sketch three-dimensional objects from different views, including top, front and side views (<u>Reasons about</u> <u>spatial orientation</u>)

Teaching reasoning: Three key actions

reSolve website funded by the Australian Government Department of Education and managed by the Australian Academy of Science

Questions to encourage analysing

- What is the same and different about ...?
- What stays the same and what changes?
- Sort or organise the following according to ...
- Alter an aspect of something to see an effect. If we change this what will happen?
- What follows from this? What do you think will happen next if we do this?
- What do you notice...?
- When is it true?
- Is it just sometimes true, or is it always true?

COMPARE CORNER

This is a great strategy for encouraging student communication, reasoning and debate. It emphasises the power of working with students who are at the same point in the task and giving and receiving peer feedback.

The teacher invites students to move to a location in the classroom when they have achieved a particular milestone in the success criteria. Students work with the next available peer to compare, confirm, test or refine their thinking.

Questions to encourage generalising

- How can you describe what is the same?
- What is the rule?
- What is the pattern here?
- How can you describe the pattern?
- What happens in general?
- Is that ... (pattern) always going to work?
- Are there other examples that fit the rule?
- How could you explain the rule to someone else?

THINK ALOUD

An ideal strategy for increasing student reasoning and communication and making visible where student thinking is efficient, needs to be be refined or breaks down

A think aloud can be led by a teacher or a student. Students can work in pairs sharing and recording think alouds in the classroom. Think alouds can be captured in writing or using technology and provide a powerful form of assessment.

Questions to encourage justifying

JUSTIFYING

- Is this conjecture just sometimes true, or always true?
- How do you know?
- How could we show or prove that it is true?
- True or false? Why? Let's justify.
- Convince me...
- How can we be sure ...?

- Tell me what is wrong with....
- Explain why does this (process/rule/result) work?
- Can you go through that step by step?
- Can you explain that step by step?
- Why?
- If...then...

PROVE IT

An ideal strategy for probing and increasing understanding, reasoning and communication.

When a student shares a theory that underpins an important mathematical idea, the teacher invites other students in the class to prove, disprove or build upon the theory in a way that will increase the understandings of the class.

Assessing reasoning: Rubrics

	ANALYSING		GENERALISING			JUSTIFYING		
NOT EVIDENT	•	Does not notice common property or pattern.	•	Does not communicate a common property or rule (conjecture) for a pattern.	•	Does not justify.		
BEGINNING	•	Recalls random known facts or attempts to sort examples or repeats patterns.	•	Attempts to communicate a common property or rule (conjecture) for a pattern.	•	Describes what they did and recognises what is correct or incorrect. Argument is not coherent or does not include all steps.		
DEVELOPING	•	Notices a common property, or sorts and orders cases, or repeats and extends patterns. Describes the property or pattern.	•	Generalises: communicates a rule (conjecture) using mathematical terms, and records other cases or examples.	•	Attempts to verify by testing cases, and detects and corrects errors or inconsistencies. Starting statements in a logical argument are correct.		
CONSOLIDATING	•	Systematically searches for examples, extends patterns, or analyses structures, to form a conjecture. Makes predictions about other cases.	•	Generalises: communicates a rule (conjecture) using mathematical symbols and explains what the rule means or explains how the rule works using examples.	•	Verifies truth of statements by confirming all cases or refutes a claim by using a counter example. Uses a correct logical argument.		
EXTENDING	•	Notices and explores relationships between properties.	•	Generalises cases, patterns or properties using mathematical symbols and applies the rule. Compares different expressions for the same pattern or property to show equivalence.	•	Uses a watertight logical argument. Verifies that the generalisation holds for <i>all</i> cases using logical argument.		
Comments (feedback, reasoning prompts for further development):								

Video of student explaining reasoning

With thanks to St Patrick's Mortlake

Assessing reasoning

Sample assessment

What is the same and different about?	Alter an aspect of something to see an effect. If we change this what will happen?	What is the pattern here?	ls that (pattern) always going to work?	Convince me	Explain - why does this work?
--	--	---------------------------	--	-------------	-------------------------------------

JUSTIFYING: Recognises what is correct or incorrect using materials, objects or words.	Student Name: Work Sample 2 Reasoning Task: Mp Observation of student's reasoning:	ifil V Date:
However, the second part of the statement does not make sense. The teacher	add/even number at vertex.	
would need to speak to the student to clarify what they mean. (Maybe just a slip?)	" Auching lance to	
, , , , , , , , , , , , , , , , , , ,	+ beechopping a rogical ingement	but no why
S it it is impossible to make ar	Analysing Generalising	Justifying
with an even number at the look.	• Does not notice common property or pattern. • Does not communicate a common property or rule (conjecture).	Does not justify.
even one can make a magic & wi	• Recalls random known facts or attempts to sort examples or repeats patterns. • Attempts to communicate common property or rule for pattern.	a Describes what they did and recognises what is correct or incorrect. Argument is not coherent or does not include all steps.
(i) (i) (i) (i) (i)	 Notices a common property, or sorts and orders cases, or repeats and extends patterns. Describes the property or pattern. Generalises: communicat rule (conjecture) using mathematical terms and ree other cases or examples. 	es a Attempts to verify by testing cases and detects and corrects errors or inconsistencies. Starting statements in a logical argument are correct.
	 Systematically searches for examples, extends pattern or analyses structure to form a conjecture. Makes predictions about other cases. * what will 	 verifies truth of statements by confirming all cases or refutes a claim by using a counter example. Uses a correct logical argument.
(2) (5) (2) (4)	 Notices and explores relationships between properties. Generalises cases, patterns properties using mathemat symbols (including algebra symbols) and applies the r Compares different expressions for the same pa or property to show equivalence. 	ior cal ic ule. Uses a watertight logical argument. Verifies that the generalisation holds for <i>all</i> cases using logical argument.
Mathematics Reasoning Research Group	Comments (feedback, reasoning prompts for further development):	
	* Look closer at properties of o	dd/even numbers
ANALYSING: Notices similarities across examples.	the de institution >11	
The student notices the importance of the vertex in creating a Magic	Durisp Josi fich und 3 look of	reasoning prompts.

	Student Name: Wark SAMPLE 4 Reasoning Task: MAGIC V Date:					
JUSTIFYING: Verifies the statem	Observation of student's reasoning: * Watertight argument about odd/evan at totals of arms - gave examples to support					
The next step is to develop a wate						
I think Sam is right because after you	put a	justification				
of the V the remaining number should	add u	Analysing	Generalising	Justifying		
can be divided by 2. for	0	• Does not notice common property or pattern.	Does not communicate a common property or rule (conjecture).	Does not justify.		
) 1,2,4,5) 1+2+4+	• Recalls random known facts or attempts to sort examples or repeats patterns.	 Attempts to communicate a common property or rule for the pattern. 	 Describes what they did and recognises what is correct or incorrect. Argument is not coherent or does not include all steps. 		
0 0 1,3,4,5	12 can by :	 Notices a common property, or sorts and orders cases, or repeats and extends patterns. Describes the property or pattern. 	 Generalises: communicates a rule (conjecture) using mathematical terms and records other cases or examples. 	Attempts to verify by testing cases and detects and corrects errors or inconsistencies. Starting statements in a logical argument are correct.		
 H3+4+5=13 B can not be the the clivided evenly add Ha 2 acms 	you p vertex, t up to	 Systematically searches for examples, extends pattern or analyses structure to form a conjecture. Makes predictions about other cases. 	 Generalises: communicates a rule using mathematical symbols and explains what the rule means or explains how the rule works using examples. 	 Verifies truth of statements by confirming all cases or refutes a claim by using a counter example. Uses a correct logical argument. 		
ANALYSING: Extending GENERALISING: Extending	divided ANALYSIN relationsh	• Notices and explores relationships between properties. balun U balun in duusion	 Generalises cases, patterns or properties using mathematical symbols (instanting algebraic symbols) and applies the rule. Compares different expressions for the same pattern or property to show equivalence. 	 Uses a watertight logical argument. Verifies that the generalisation holds for <i>all</i> cases using logical argument. 		
JUSTIFYING: Extending	of pattern	Comments (feedback, reasoning prompts	for further development):			
Teacher Prompt: What if we use numbers from 2-6? What if we have more even than odd numbers? Can you convince us that an even number at the bottom will make a Magic V? Why?	The stude odd and e the signifi in total.	* Enhance justifica possible Magic V	thin by explorin 's e.g. using	numbers 2-6.		

Moving forward with Working Mathematically • Understanding reasoning What is **one thing** you will do in your mathematics lessons tomorrow to • Teaching reasoning include working mathematically • Assessing reasoning processes?

Andrea de Carvalho

Australian Curriculum Working Mathematically Resources